

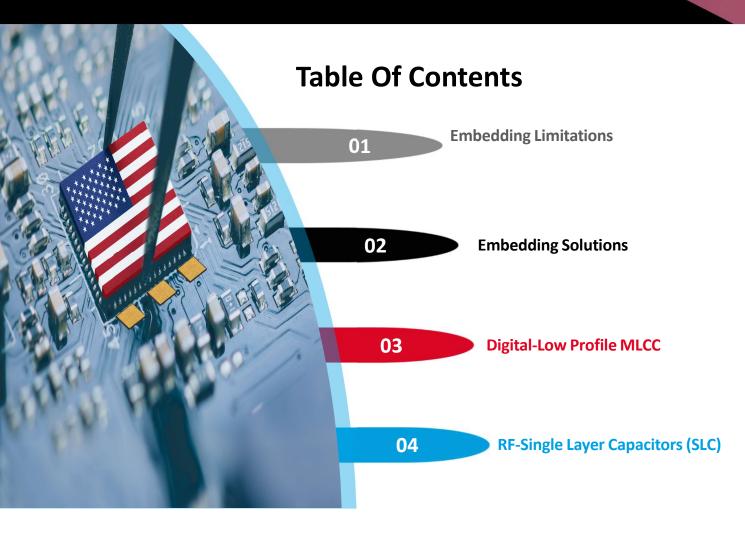
CMSE 2024

Reducing Board Surface Area and Improving RF
Performance by Embedding Ultra-Thin
Capacitors

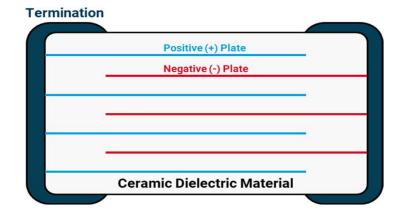
Ryan Messina: ryan.messina@kyocera-avx.com

Corey Nelson Ashley Stanziola

ACCELERATING INNOVATION



Embedding Ultra-Thin Capacitors

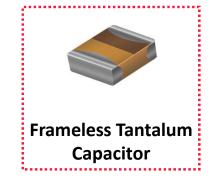


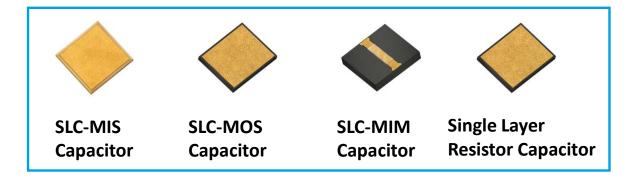
Traditional MLCC Limits

Capacitor Background - MLCC

MLCC Embeddable limitations

- Stacks multiple plates to increase capacitance range, negatively affecting height constraints
- Surface mount components can be difficult to embed
- o CTE Mismatch issues
- Chip thickness based on capacitance and number of layers required
 - 01005 size components could be embedded with 5mil thickness
- Termination limits connections
 - · Would prefer to be uniform and copper for embedding
 - · Can't be placed on a ground plane without rotating


Cross section of a traditional surface mount capacitor with multiple plates with 1 terminal shown with blue plates and the other with red plates


General Embedding Solutions

Current Embedding Solutions in the marketplace

MLCC-2T RGC MLCC-3T Std MLCCCapacitor Capacitor Capacitor Capacitor Capacitor Capacitor

Digital Applications

RF Applications

Digital Embedding-MLCC

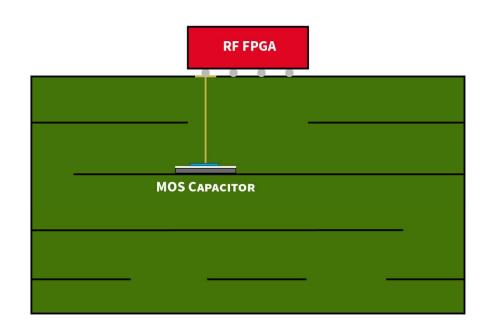
Current line up

- Ultra Thin, Low Inductance, Large Capacitance, Improved Filtering
- Can further reduce components with the use of Feedthru Caps, Improved Filtering, Hi CV
- Ultra Thin, Low Inductance, Large Capacitance, Improved Filtering
- Thinnest option, CTE match with board, but lower max voltage and not practical in all solutions

Digital Embedding Specs

Current Embeddable Lineup-Digital							
	2T RGC	Siclicon Cap Array	Std MLCC (01005)				
LxW	1.0 x 0.5 mm	1.0 x 0.5 mm	1.0 x 0.5 mm	2.53 x 0.6 mm	0.4 x 0.2 mm		
Max Thickness	0.3 mm	0.5 mm	0.15 mm	0.165 mm	0.22 mm		
Capacitance	0.1 μF	4.3 μF	0.21 μF	0.67 μF	0.47 μF		
Dielectric	X7R	X6S	Equivalent to C0G	Equivalent to COG	X5R		
R.V.	4 V	4 V	4 V	4 V	6.3 V		

Proposed Embeddable Lineup-Digital (Low Profile)							
	2T RGC 3T 2T Silicon Cap Siclicon Cap A						
LxW	1.0 x 0.5 mm	1.0 x 0.5 mm	1.0 x 0.5 mm	2.4 x 2.0 mm			
Max Thickness	0.22 mm	0.22 mm	0.15 mm	0.22 mm			
Capacitance	1 μF	1 μF	0.525 μF	4.8 μF			
Dielectric	X7R	X6T	Equivalent to C0G	Equivalent to COG			
R.V.	4 V	4 V	2 V	2 V			


Typical Applications

- Advanced FPGA GPUs/ASICs
- Analog Digital Converter (ADC)
- High-Speed Decoupling

RF Embedding-SLC

SLC Advantages

- Embedding circuits into the printed circuit board saves space
- Improved frequency response
- RF performance can be improved through proper embedding
- Greatly reduced thickness, wire bondable, ideal ground plane position
- Reduces trace inductance by such a large magnitude that frequency range is extended

RF Embedding-SLC

Capacitor Background – SLC

Single Layer Capacitor (SLC)

- Two plate design
 - · Allows backside to be on ground plane
- o Ceramic material changed to change capacitance value
- Can get high capacitance values in small package
- Offers ultra-thin thicknesses

Embeddable Limitations

- Capacitance dependent on thickness/material
- Materials vary in temperature stability
- Materials vary in structural match with PCB

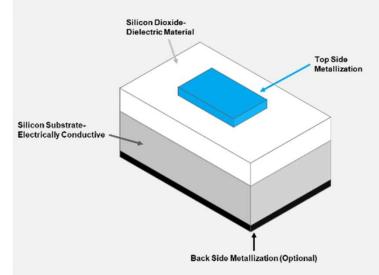
Top Side Metallization

Ceramic Dielectric Material

Back Side Metallization

Top Cross section of a single layer capacitor the top metallization is represented with a blue line and the backside metallization is represented with a red line. Bottom Render of SLC frontside (with border) and backside

RF Embedding-MOS Cap

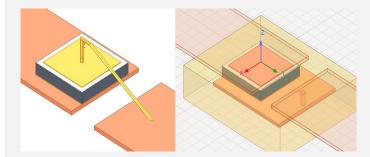

Capacitor Background – MOS Capacitor

Metal Oxide Silicon (MOS) Capacitor

- Two plate design
 - Subset of the SLC capacitors
- Silicon substrate
 - Improves temperature performance and board match
 - Ultra-thin design below 5 mil
- Oxide layer for dielectric
 - Can vary thickness without affecting chip thickness
- oldeal for copper termination plating

Embeddable Limitations

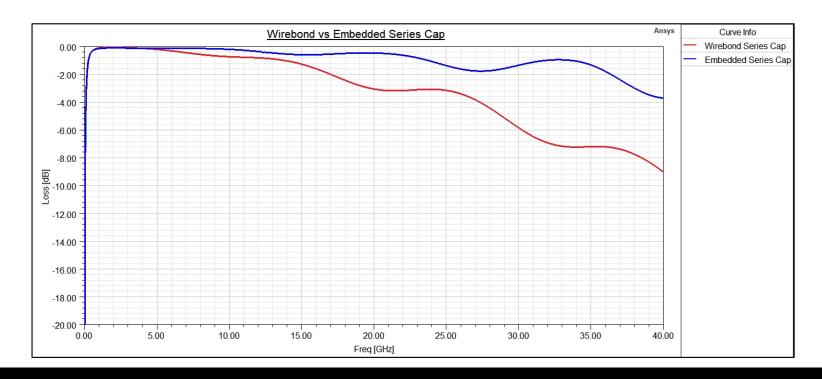
Cap values limited vs same size SLC


Cross section of metal oxide silicon capacitor with blue line for top side metallization and black line for backside metallization

RF Embedding-MOS Cap

Modeled Performance

- Wirebond vs Embedded
- Modeled performance in Ansys HFSS
- Wirebond Model
 - MOS Capacitor with wirebond connection bridging gap between transmission lines
- Embedded model
 - MOS Capacitor with via from transmission line to capacitor
 - Internal trace beyond the capacitor size connecting backside
 - Via from internal trace to top side transmission line
 - Epoxy used for the material where the embedding happened
- Transmission lines and board remained same other than noted changes
 - o Rogers 4350, 50 ohm lines



Left: 10pF MOS capacitor on Rogers 4350 test board with wirebond connection. **Right:** 10pF MOS capacitor embedded in epoxy filled Rogers 4350 test board with via to transmission line.

RF Embedding-MOS Cap

Model - Wirebond vs Embedded - Results

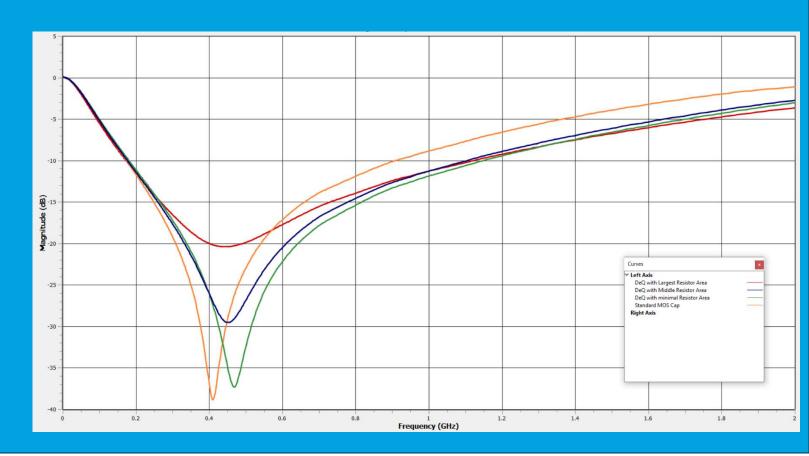
- Wirebond degrades at 5 GHz
- Cap performance extends beyond 20 GHz with minimal loss with embedded method

Typical RF SLC Offering

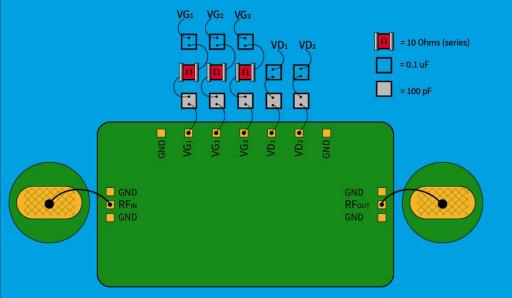
Temperature	-55°C to +125°C			
Frequency	≤ 100 GHz			
Rated Voltage	100 V _{DC}			
Thickness	5 MIL 10 MIL			
30 x 40		15 pF		
40 x 20	15 pF			
40 x 40		15 pF		
50 × 50	15 pF			
80 x 20	15 pF			
80 x 40		1 pF & 15 pF		
120 × 40		15 pF		

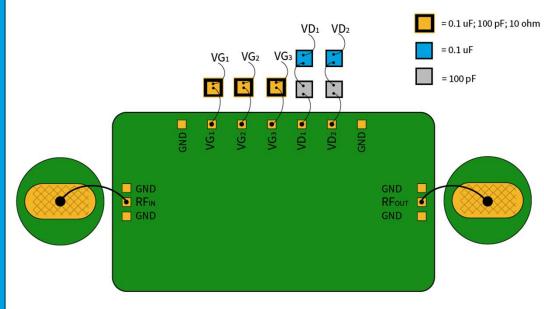
Temperature	-55°C to +125°C				
Frequency	≤ 100	GHz			
Rated Voltage	25 - 20	00 V _{DC}			
Thickness	5 - 10 MIL				
10 × 10	1 - 12 pF	1 - 19 pF			
20 × 20	1 - 75 pF	1 - 115 pF			
30 x 30	1 - 190 pF	1 - 290 pF			
40 × 40	1 - 370 pF	1 - 550 pF			
50 × 50	1 - 600 pF	1 - 900 pF			
60 x 60	1 - 880 pF	1 - 1320 pF			
70 × 70	1 - 1200 pF	1 - 1800 pF			

Ultra Maxi	Maxi		Maxi +		Z Series		Temp Compensating		111 Series
No Boarders	No Boarders	Boarders	No Boarders	No Boarders Boarders		Boarders	No Boarders	Boarders	Boarders


Temperature	-55°C to +125°C									
Frequency		≤ 100 GHz								
Rated Voltage	25 V _{DC}	50 V _{DC} 50 8						00 V _{DC}	≤ 100 V _{DC}	
Thickness	5.5 - 7.5 MIL			5 - 9	MIL			4.5 - 12 MIL		
10 x 10	200 - 300 pF									
15 x 15	300 - 600 pF	68 - 330 pF	51 - 220 pF	330 - 390 pF	220 - 330 pF	20 - 200 pF	20 - 150 pF	0.06 - 60 pF	0.06 - 33 pF	
18 × 18								0.08 - 75 pF		0.1 - 220 pF
20 x 20	0.55 - 1 nF								0.1 - 62 pF	
25 x 25	0.9 - 1.5 nF	330 - 750 pF	220 - 550 pF	0.39 - 1 nF	330 - 820 pF	35 - 470 pF	30 - 390 pF	0.2 - 150 pF	0.2 - 100 pF	0.2 - 510 pF
30 x 30	1.4 - 2 nF								0.3 - 150 pF	
35 x 35	1.9 - 2.7 nF	0.75 - 1.2 nF	0.56 - 1 nF	1 - 1.8 nF	0.82 - 1.5 nF	80 - 800 pF	70 - 700 pF	0.4 - 300 pF	0.4 - 200 pF	0.4 - 910 pF
40 x 40	2.6 - 3.5 nF								0.5 - 270 pF	
45 x 45	3.3 - 4.4 nF	·	·		·					
50 × 50	4.2 - 5.4 nF	1.2 - 2.7 nF	1 - 2.2 nF	1.8 - 3.3 nF	1.5 - 2.7 nF	0.15 - 2 nF	0.14 - 1.8 nF	0.6 - 680 pF	0.8 - 430 pF	0.6 - 2200 pF
55 × 55	5.1 - 6.5 nF									
70 x 70		2.7 - 4.7 nF	2.2 - 4.7 nF	3.3 - 6.8 nF	2.7 - 6.8 nF	0.3 - 3 nF	0.28 - 2.7 nF	1.3 - 1200 pF		1.3 - 3900 pF
90 × 90		4.7 - 8.2 nF	4.7 - 8.2 nF	6.8 - 10 nF	6.8 - 10 nF	0.5 - 4.7 nF	0.47 - 4.5 nF	2.2 - 1800 pF		2.4 - 6200 pF

NPI: Single Layer Resistor Capacitor (SLRC)


Temperature	-55°C to +125°C				
Frequency	≤ 100 €	SHz			
Rated Voltage	25 - 2	00 V _{DC}			
Thickness	5-10 MIL				
10 × 10	1 - 12 pF				
20 × 20	1 - 75 pF	1 - 115 pF			
30 × 30	1 - 190 pF 1 - 290				
40 × 40	1 - 370 pF 1 - 550 p				
50 × 50	1 - 600 pF	1 - 900 pF			
60 × 60	1 - 880 pF	1 - 1320 pF			
70 × 70	1 - 1200 pF 1 - 1800				



RF Application: SLRC

Traditional configuration for LNA MMIC

Optimized configuration for LNA MMIC utilizing SLRC

Embedding Passive Components

Summary

- The Industry is moving towards embedding passive components to reduce board space
- Embedding SLC or MOS Capacitors reduces board footprint
 - SLC and MOS are very customizable devices to fit the needs of your system
 - o Arrays give flexibility and can be multiple capacitance values
 - Using vias, they can be mounted in a variety of ways
- Removing the wire bond creates an RF performance boost
 - Even compared to surface mount components
- Wide Array of Component Suppliers are offering embeddable solutions
- New Parts are being introduced to facilitate the need to reduce board space (SLRC)
 - o Most passive component suppliers will be introducing these parts in the near future

THANK YOU.

KYOCERA-AVX.com

