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“Failures are often caused by latent microscopic instabilities.”



• Unexpected operating waveforms from transients
– Concentrated stress densities
– EMI
– Circuit malfunction
– Protective shutdown
– Breakdown of insulation
– System failure 

Threats from Transients
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Collapse of newly opened Tacoma Narrows 
Bridge on November 7, 1940



• Inherent signal variations within system’s 
circuits (dependent on RLC dynamics, transfer 
functions and component nonlinearities)

Causes of Electrical Transients
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SYSTEM

OUTPUTS

• Dynamic inputs or 
outputs for system in 
final application

• Dynamic 
environmental 
conditions

 INPUTS

Ex: MIL-STD-461Ex: MIL-STD-704



• Natural systems described by 
differential equations

• Transient condition disrupts 
normal forcing function

Natural Response
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• Inductor generates voltage to 
slow the change in its current. 

Passive Components
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• Resistor dissipates energy to bleed power from a circuit.

• Capacitor absorbs or releases charge 
to slow the change in its voltage.
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• Transform impedance
– Increase or decrease 

dynamic voltage
– Decrease or increase 

dynamic current
• Transmit power between 

Isolated Circuits

Ideal Transformers
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Transformer Equivalent Circuit
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• Inherently loaded with 
other passive 
components

• Transient effects

𝑍-.
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o Amplification
o Oscillation
o Saturation
o Breakdown

𝑀 = 𝑘 𝐿0𝐿!



• Inherent capacitive loading from high voltage windings
• Nonlinearities 

– Magnetization dynamics
• Hysteresis
• Nonlinear permeability
• Saturation

• Saturation risks
• Turn on phase dependency
• Volt – Second unbalance

• Flux Remanence Risks
– Reduced flux headroom for start up or residual magnetic moment

Susceptibilities
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Dynamic Stress Densities
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Eddy Currents Increase Stress 
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Conductor Shapes Increase 𝐸 field intensity

Insulation

Conductor

Ground

Insulation

Conductor

+
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𝐸

Ground

edge radius mils 5
clearance mils 50

Approximate Field 
Enhancement Factors:
sphere & plane 9.90

cylinder & plane 3.76
adjacent cylinders 2.51

Thin conductors increase electric field intensity at 
edge, > 3 x average voltage stress.

12 of 23



New Product Development Mitigations

DFMEA

DOEs 
Materials

RRTs
Sub Assy

ASTs
Final Assy

• Map transient stress and loss densities for review at Design 
Stages.

• Use DFMEA to identify and reduce risks of transients.
• Perform DOEs (Design of Experiments) on selected materials 

used for unprecedented stress density, physical size, 
operating level or environmental condition.

• Build selected subassemblies to perform RRTs (Risk 
Reduction Tests) of noted high risk regions before final 
assembly.

• Use ASTs (Accelerated Stress Tests) to verify design margins 
by probing induced failure modes.
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New Product Development for Risk Reduction

concept prototype verify finalize validate production control

PFMEA

Selected Specs FA / Qual Report
All Specs

Control PlansPPAP
• MSA
• Gage R & R
• Cpk - PCI

DFMEA RRTs
Sub Assy

ASTs prior to Life Test
Final Assy

DOEs 
Materials
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• Ringing frequency changes 
largely with interval.

• Overshoot ≠ Backswing.
• Identify and control 

transformer parameters 
that impact ringing in each 
interval.
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• Evaluate maximum bias current in transformers as 
generated by transient net Volt Second unbalance 
in drive or load circuits without capacitor blocks.

Volt – Second Unbalance: Bias Current Risk
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• Design magnetics to 
withstand worst case 
phasing of turn on 
waveshape transients 
at minimum operating 
frequency and 
maximum voltage and 
temperature.

Transformer Soft Start: Prevent Saturation
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• Aircraft frequency 𝜔  ~ 2𝜋𝑓	𝑤𝑖𝑡ℎ	𝑓	~400 Hz
• 100 ARMS Steady State
• Ex: 600 ARMS fault (849 Apk Transient)
• Use DOE to model magnetization curve.

Current Transformer : Fault Current Detection
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Transient Event
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State Space Simulation: PFN Saturating Current

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢
𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)&'𝐵 + 𝐷

𝑥 𝑘 + 1 = 𝐹	𝑥 𝑘 + 𝐺	𝑢(𝑘)

scale model

• Verify computer simulation 
using empirical scale model.

High energy pulse

simulated 
3500 A pk
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• Voltage pulse
Inductor Verification: Transient Voltage Pulse
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• Measure component’s effective inductance under 
extreme conditions throughout full scale production.
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• Verify residual magnetization does not cause 
excessive magnetic moment at turn off.

Magnetorquer Remanence: Residual Moment
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• Use high bandwidth instruments to detect latent transient amplification 
and persistent ringing at normal operating conditions.

• Evaluate worst case bias current for magnetics in switched mode circuits 
without capacitor blocks.

• Check flux density for worst case phasing of voltage turn on at minimum 
operating frequency and maximum voltage and temperature.

• Verify current transformers responsible for circuit protection can detect 
transient overcurrent despite saturation reduced output.

• Verify residual magnetization does not cause insufficient magnetization 
headroom or unacceptable radiated flux at turn off.

• Perform DOEs, RRTs and ASTs to mitigate risks through Design Stages.
• Employ CAPs, MOVs or similar to protect circuits susceptible to lightning.

Counter Transient Threats in Magnetics
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