Securing Microelectronic Supply Chains with Dendritic Identifiers

Michael N. Kozicki

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 *kozicki@asu.edu*

Densec ID LLC, 11811 N Tatum Blvd Suite 3031, Phoenix, AZ 85028 michael@densecid.com

Provenance – an issue of national security

"...18 newly completed F-35 fighter jets sat outside Air Force Plant 4, ... while U.S. Defense Department officials tried to untangle the **supply chain mess** that had stuck them there." *Fake parts: A Pentagon supply chain problem hiding in plain sight, Defense News, December 6, 2022*

"An Air Force investigation of a fatal fighter jet crash in 2020 quietly discovered that key components of the pilot's ejection seat may have been counterfeit, ..."

An F-16 pilot died when his ejection seat failed. Was it counterfeit? Air Force Times, September 13, 2022

https://www.defensenews.com/pentagon/2022/12/06/fake-parts-a-pentagon-supply-chain-problem-hiding-in-plain-sight/ https://www.airforcetimes.com/news/your-air-force/2022/09/13/an-f-16-pilot-died-when-his-ejection-seat-failed-was-it-counterfeit/

Trust and assurance in microelectronics

"Semiconductor components increasingly require unclonable and tamper resistant identifiers, which are especially necessary as devices become increasingly heterogeneous collections of chiplets and subsystems.

These **fingerprints provide traceability**, which contributes to process improvements and yield learning and enable tracking for a tightly managed supply chain."

Anne Meixner "Fingerprinting Chips For Traceability" Semiconductor Engineering, December 12, 2023; https://semiengineering.com/fingerprinting-chips-for-traceability/

Digital identity – the key to transparency

There are two components of digital identity:

- The **database** which holds the information, often in the form of a Distributed Ledger Technology (e.g., *blockchain*) for **data security**.
- The digital trigger this is the physical element that connects items in the real world to their digital presence in the cloud.

Naturally occurring patterns and identity

Natural patterns are used to identify **people**

Fingerprint

Natural patterns can be used to identify *things*

Dendritic Identifier

Nature gives these patterns very desirable attributes as **unique identifiers**...

Dendrite: from the Greek $\delta \varepsilon v \delta \rho o v$

A structure that develops with a **continuously branching tree-like form**

They are **fractals** with distinct "**keypoints**" which makes them easy to read using computer vision

Dendrites and computer vision

Dendritic keypoints are **nodes** (branching and joining points) and **terminations**.

Keypoints have slightly different **geometry** and **position** for every instance of formation.

Distinctive: Easily recognizable.

 \bullet

- Localizable: Can be accurately located.
- **Repeatable**: Detectable regardless of changes in viewpoint, illumination, etc.
- **Robust**: Invariant to image transformations and noise.
- **Quantity**: Sufficient to describe the pattern uniquely without overwhelming computation.
- **Efficiency**: Detection and classification are computationally efficient for realtime applications.

Informational and structural entropy

Total **number of keypoints** at generation *k* of the dendrite

$$K_k = \left(S^k\right)^D$$

- For our dendrites *S* = 2
- We can resolve to the 3^{rd} generation, k = 3
- Measured fractal dimension *D* = 1.7
- So, we typically obtain **34 strong keypoints**

Taking 2 bits per keypoint (i.e., 4 equiprobable states) gives 4³⁴ >10²⁰ possible variations

- But the rule-based pattern has a **low structural entropy**, which allows errors to be detected and repaired (images b and c)
- In practice, keypoint detectors (e.g., ORB) can perceive more detail (image d)

Dendrite formation in fluids

The **Saffman–Taylor** instability is seen when a less viscous fluid is pushed into a more viscous medium.

- The interface moves more quickly at random bulges in the interface where the pressure gradient is highest, leading to a positive feedback effect and "viscous fingering".
- Leads to a "predictable" rule-based structure with embedded random elements.

- b_0 = compressed fluid thickness
- v = separation velocity

 K_l and n depend on the geometry of the system and fluid rheology (for stamping, both are dimensionless and close to unity)

3D security

Pattern has a subtle **third dimension** (< 100 μ m) Identifier material is a mixture of a semi-transparent medium and **reflecting flakes**

Produces a unique **optical signal** that is **angle dependent** and difficult to fake

Illumination at 30° L of normal (a) Illumination at 30° R of normal (b)(c)(d)

Get similar "constellations" when illumination is within 10°

Use examples in IC packaging

Roll-to-roll label-based acrylic DI for trays and boxes (14 mm)

Stamped removable acrylic + mica DI on back of silicon chiplet (5 mm)

Original

Keypoints

Stamped high temperature compatible Copprium Cu-based ink on integrated heat spreader (6 mm)

THANK YOU!