Microprocessor Reliability Enhancement Under Ionizing Radiation using Performance Counters

Antonio Teijeiro, MSEE Advisor: Eric MacDonald, Ph.D. University of Texas at El Paso (915) 205-0648 aeteijeiro@gmail.com

Personal Background

- BSEE, MSEE from UTEP
- Year-Round Radiation Effects
 Experimentation Intern at Sandia
 National Laboratories
- Doctorate research on performance counter-based microprocessor reliability enhancement in high radiation environments

Introduction **Theoretical Foundations** System Design Experimentation Results Discussion **Conclusion and Future Work**

The Problem *Processing Power in Space*

•Increased processing power required for global security and scientific advancement.

- •LEO image processing
- •Artificial Intelligence (AI)
- •Robotics for extreme environments
- Space exploration

¹https://www.cpushack.com/2012/08/14/spacecraft-processors-mars-curiosity/rad750/

Radiation Effects

Solutions

- Computational redundancy
 - Duplication of work for error detection, triplication for error correction [1]
- Novel algorithms, additional machine learning layers promising but require refactoring [2], [3], [4].
 Algorithm/layer must be tailored to a particular problem.
 - Require access to source code.

Statistic and a

Radiation Effects *Proposed Solution*

- Utilize hardware performance counters for error detection [5]
 - 2702 possible events to monitor
 - 16 performance counters
 - Practical limitation to ≤ 10 at a time.
 - Used for quality control, GPU software profiling

Introduction **Theoretical Foundations** System Design Experimentation Results Discussion Conclusion and Future Work

GPU microarchitecture

¹https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

GPU microarchitecture

¹https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

GPU microarchitecture *Low-Level Memory Hierarchy*

UP.

¹https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-structure

Hardware Profiling Events, Counters, and Metrics

- *Event* refers to some hardware condition in the GPU.
- *Counters* are special registers which measure event *activity*.
- *Metrics* are ...
- 2702 hardware events available for monitoring the GA102
 - 4 rollups per event [6]
 - sum, average, min, max
 - 18 sub-metrics appliable to each rollup
 - 17 possible units
 - 15 possible subunits
 - 13 possible pipestages

Hardware Profiling Events, Counters, and Metrics

• Event:

smsp__pipe_fma_cycles_active

• Counters:

%pm0 to %pm7 %pm0_64 to %pm7_64

• Metrics:

smsp__pipe_fma_cycles_active.sum

Introduction **Theoretical Foundations System Design** Experimentation Results Discussion Conclusion and Future Work

The Benchmark PAPI integration with GPU4S

- Focusing on the matrix_multiplication_bench benchmark within GPU4S [7].
- PAPI is an open-source performance counter configuration and reading tool.
- Counters are read once before and once after kernel launch.

CUDA compilation

- Compilation to PTX code, JIT compiled to SASS code on the GPU, then to executable.
- Process is broken up by passing the -dryrun and keep options to the nvcc line.
 - Error injection instructions are inserted into PTX code, prior to the SASS generation step.

CUDA compilation

Introduction **Theoretical Foundations** System Design **Experimentation** Results Discussion Conclusion and Future Work

Hypothesis

- Upsets affecting L0 instruction cache, LSU, or ALU hardware can incite cache misses
 - Will be detectable from miss-stage, frame buffer, and DRAM activity.
- Upsets affecting the FMA pipeline will be reflected in abnormal FMA activity.
- Upsets affecting the ADU will be reflected in abnormal FMA activity

GPU microarchitecture

Procedure

- 1. L0 cache, LSU, and ALU are all targeted with 2²0 XOR in the destination address used in the store instruction.
 - L0 cache targeted at the warp level.
 - LSU targeted at the quarter-warp level
 - ALU targeted at the lane level.
- 2. FMA targeted by the addition of 100,000 to thread index calculation results at the warp level.
- 3. ADU targeted by logical XOR with predicate guard condition used for early thread exits.
- 4. Perform 1000 golden, 1000 injected runs.
- 5. Noise removal, apply machine learning

Introduction Theoretical Foundations System Design Experimentation

Discussion

Results

Conclusion and Future Work

Best Metrics SEU

TABLE I. BEST SDC DETECTION RESULTS

Targeted	Metric	3-fold CV	LOF
Hardware	Weule	Accuracy	Accuracy
		[0.96701649	
L0 i-Cache	lts_t_requests_aperture_device_evict_normal_lookup_miss.sum	0.97601199	91.55%
		0.96696697]	
LSU		[0.93553223	
	lts_t_requests_aperture_device_evict_normal_lookup_miss.sum	0.93703148	72.6%
		0.95495495]	
ALU		[0.86656672	
	lts_t_requests_aperture_device_evict_normal_lookup_miss.sum	0.87556222	49.95%
		0.87987988]	
		[1 1 1]	
FMA	sm_pipe_fma_cycles_active.sum	[1. 1. 1.]	100.0
		[1 1 1]	
ADU	smpipe_fma_cycles_active.sum	[1. 1. 1.]	100.0

Hypothesized Metrics SEU

TABLE II. LESS SENSITIVE METRICS (SEU)

Targeted Hardware	Metric	3-fold CV Accuracy	LOF Accuracy
L0 i-Cache		[0.79910045	69.8%
	11tex_t_bytes_pipe_lsu_lookup_miss.sum	0.77961019	
		0.75825826]	
L0 i-Cache		[0.48275862	48.8%
	fbpadram_write_bytes.sum	0.48125937	
		0.51201201]	
LSU		[0.63568216	53.45%
	l1tex_t_bytes_pipe_lsu_lookup_miss.sum	0.63118441	
		0.63963964]	
LSU		[0.48575712	51.05%
	fbpa_dram_write_bytes.sum	0.47826087	
		0.503003]	
ALU		[0.57721139	49.1%
	l1tex_t_bytes_pipe_lsu_lookup_miss.sum	0.5892054	
		0.56606607]	
ALU		[0.55922039	50.25%
	fbpa dram write bytes.sum	0.51124438	
		0.51951952]	

Hypothesized Metrics MEU (Repeated SEU)

TABLE III. LESS SENSITIVE METRICS, REPEATED SEU

Targeted Hardware	Metric	3-fold CV	LOF Accuracy
I Q i Cache	liter t bytes nine lsu lookun miss sum	[1 1 1]	03 85%
L0 i-Cache	These is bytes pipe is tookup miss.sum	[0.98650675	91.6%
Lo j-Cache	fbpa dram write bytes.sum	0.98350825	91.070
		0.98048048]	
LSU	l1tex t bytes pipe lsu lookup miss.sum	[1. 1. 1.]	98.85%
LSU		[0.95352324	86.75%
	fbpa dram write bytes.sum	0.93853073	
		0.95195195]	
ALU		[0.98650675	98.35%
	l1tex t bytes pipe lsu lookup miss.sum	0.988006	
		0.996997]]	
ALU		[0.7946027	70.3.%
	fbpa dram write bytes.sum	0.79610195	
		0.80930931]	

Introduction **Theoretical Foundations** System Design Experimentation Results Discussion Conclusion and Future Work

Overfitting Analysis

Overfitting Analysis

Overfitting Analysis

Introduction **Theoretical Foundations** System Design Experimentation Results Discussion **Conclusion and Future Work**

Conclusion

- Certain hardware is more difficult, but not impossible to monitor
- LOF classification is useful for error detection training without fault injection.
- Perfect accuracy is possible for deterministic metrics

Future Work

- 1. Expansion to remaining hardware
- 2. Consider regression to older GPU with CUPTI compatibility
- 3. Test under low levels of radiation
- 4. Apply in conjunction with progressive SM deactivation

Questions?

References

- Iturbe, X., Keymeulen, D., Ozer, E., Yiu, P., Berisford, D., Hand, K., & Carlson, R. (2015). An integrated SOC for Science Data Processing in next-generation space flight instruments avionics. 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). <u>https://doi.org/10.1109/vlsi-soc.2015.7314405</u>.
- Santos, F. F., Pimenta, P. F., Lunardi, C., Draghetti, L., Carro, L., Kaeli, D., & Rech, P. (2019b). Analyzing and increasing the reliability of convolutional neural networks on gpus. *IEEE Transactions on Reliability*, 68(2), 663–677. https://doi.org/10.1109/tr.2018.2878387
- Sabena, D., Reorda, M. S., Sterpone, L., Rech, P., & Carro, L. (2013). On the evaluation of soft-errors detection techniques for gpgpus. 2013 8th IEEE Design and *Test Symposium*. https://doi.org/10.1109/idt.2013.6727092
- 4. So, H., Didehban, M., Shrivastava, A., & Lee, K. (2019). A software-level redundant multithreading for soft/hard error detection and recovery. 2019 Design, Automation & Test in Europe Conference & Exhibition.

References

- Guerrero-Balaguera, J.-D., Condia, J. E., & Reorda, M. S. (2021). Using hardware performance counters to support infield GPU testing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). https://doi.org/10.1109/icecs53924.2021.9665511
- 6. *Kernel Profiling Guide*. NVIDIA Documentation Hub NVIDIA Docs. (n.d.-a). https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-structure
- Kosmidis, L., Rodriguez, I., Jover, Á., Alcaide, S., Lachaize, J., Abella, J., Notebaert, O., Cazorla, F. J., & Steenari, D. (2020). GPU4S: Embedded gpus in space - latest project updates. *Microprocessors and Microsystems*, 77, 103143. https://doi.org/10.1016/j.micpro.2020.103143

